

Precision Ranching Technologies

Tools for Ranch Management

What is "Precision Ranching Technology"

- Precision ranching involves the use of sensors and technology to increase production, reduce labor time, and streamline operational efficiency.
 - Sensors are capable of collecting:
 - Individual GPS location data
 - Boundary monitoring (the basis of "Virtual Fence")
 - Precipitation data
 - In-tank water levels
 - There are multiple options for collecting data from sensors:
 - Cellular (4G/5G)
 - LoRaWAN (long-range wide area network)
 - Satellite
 - Wi-Fi
 - Ensure that the sensor you're considering is compatible with the connectivity option that's best for you.

Connectivity Options

Cellular (4G/5G):

- The cellular 4G/5G network is a nationwide system already put in place by cellular companies (e.g., Verizon, T-Mobile, AT&T, Sprint, etc.) that allows people to connect their devices to the internet and transfer information from one place to another.
- It's the same system your cell phone or tablet uses every time you make a call, send a message, or go
 online.

LoRaWAN:

Long-range wide area networks (LoRaWAN) are systems that use long-range radio frequencies to transmit
information across distance.

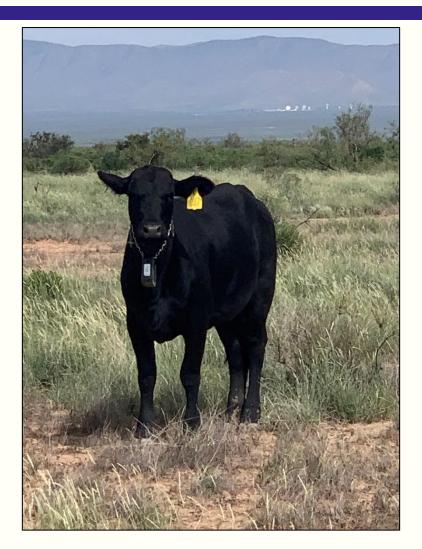
Satellite:

• There are companies with networks of satellites (e.g., Starlink, Kuiper, OneWeb, etc.) that work together to create virtually uninterrupted internet coverage across most parts of the world.

Wi-Fi:

- Wi-Fi uses routers connected to a central wired internet source from a cable company (e.g., Century Link, Xfinity, etc.) to spread wireless internet coverage across distance.
- Most public buildings and many homes utilize Wi-Fi routers to provide a wireless internet network that's easily accessible by phones, tablets, computers, and other devices.

Individual GPS Tracking Collars


- Tracking collars placed on livestock allow the manager to:
 - Locate the herd or individual cattle from a computer or mobile device
 - Identify and locate injured, escaped, or immobile animals
 - Increase operational efficiency by reducing time spent looking for cattle
- Current Cost: (August 2022)
 - GPS collar: \$77 each
 - Solar-powered portable signal receiver station: \$2,600-\$5,000 each
 - Data storage and processing subscription: one payment of \$2,300 for up to 7 receiver stations and 200 sensors, plus an annual fee of \$290 per receiver station

Virtual Fence Collars

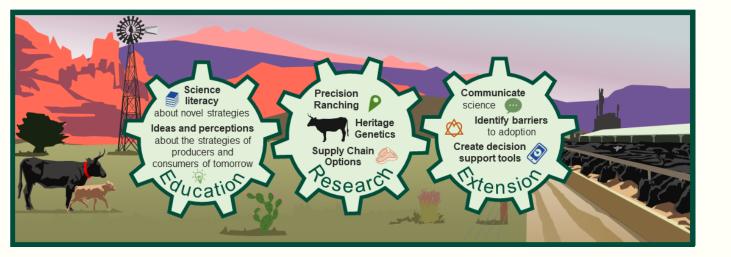
- Virtual Fence collars divide large grazing areas into "digital" paddocks
 - GPS enabled-technology allows the user to define a grazing area from a computer or mobile device
 - When livestock near the "boundary," the collar emits a noise, then a small electric pulse to discourage livestock from crossing the boundary
 - After training with the collars, cattle learn to respond to the collar's noise and rarely need an electric pulse to remain in the boundary.
 - Virtual fencing of livestock could be implemented to help protect creeks, streams, and fragile riparian zones, manage fire fuels, or rest and restore rangelands impacted by fires, floods and droughts.
- Current Cost: (December 2022)
 - Virtual Fence collar: \$285 each
 - Subscription service: \$60 per year

Real-Time Data Tipping Bucket Rain Gauge

- Real-time data tipping bucket rain gauges can be deployed over ranges to track precipitation
 - Real-time data rain gauges provide information using LoRaWAN about precipitation events, that can vary pasture by pasture, in a dashboard interface a rancher can access from a computer or smartphone.
 - This information could eliminate, or reduce, the need to drive to traditional rain gauges spread across a large area, potentially saving time and fuel and reducing wear and tear on vehicles.
- Current Cost: (August 2022)
 - Rain gauge: \$1,143 per gauge
 - Solar-powered portable receiver station: \$2,600-\$5,000 each
 - Data storage and processing subscription: one payment of \$2,300 for up to 7 receiver stations and 200 sensors, plus an annual fee of \$290 per receiver station

Ultrasonic Distance Water Level Sensor

- Ultrasonic distance water level sensors monitor water levels in livestock drink tanks
 - In-tank sensors reduce the need for frequent travel to check water sources
 - Data is collected at set intervals, and level alerts can be set by the user
 - Water level sensors aid ranchers in making rapid decisions to monitor and address water supply issues in remote locations
- Current Cost: (August 2022)
 - Ultrasonic water level sensor: \$670 each
 - Solar-powered portable receiver station: \$2,600-\$5,000 each
 - Data storage and processing subscription: one payment of \$2,300 for up to 7 receiver stations and 200 sensors, plus an annual fee of \$290 per receiver station



Body Condition Scoring Camera

- The Body Condition Scoring Camera will include:
 - A camera mounted in an enclosed/high traffic area, i.e. near feed, processing alley, etc.
 - Images taken as cattle pass under the camera
 - Images processed by software, body condition score sent to user interface
 - Useful for evaluating cattle condition
- Current Cost: (October 2022)
 - 3D camera: \$330 each
 - Raspberry Pi computer: \$75
 - RFID scanner: \$280
 - Time of Flight sensor: \$55
 - Other supporting hardware: \$125
- Currently in research phase only!

Agricultural
Research
Service
West Texas A&M

Funded by USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative's Sustainable Agricultural Systems (SAS) program. Grant # 2019-69012-29853

University TM

